Publications


Lowder, K. B., deVries, M. S., Hattingh, R., Day, J. M. D., Andersson, A. J., Zerofski, P. J., & Taylor, J. R. A. (2022). Exoskeletal predator defenses of juvenile California spiny lobsters (Panulirus interruptus) are affected by fluctuating ocean acidification-like conditions. Frontiers in Marine Science, 9, 909017. https://doi.org/10.3389/fmars.2022.909017
Bednarsek, N., Ambrose, R., Calosi, P., Childers, R. K., Feely, R. A., Litvin, S. Y., Long, W. C., Spicer, J. I., Strus, J., Taylor, J., Kessouri, F., Roethler, M., Sutula, M., & Weisberg, S. B. (2021). Synthesis of Thresholds of Ocean Acidification Impacts on Decapods. Frontiers in Marine Science, 8, 19. https://doi.org/10.3389/fmars.2021.651102
DeVries, M. S., Lowder, K. B., & Taylor, J. R. A. (2021). From telson to attack in mantis shrimp: Bridging biomechanics and behavior in crustacean contests. Integrative and Comparative Biology, 61(2), 643–654. https://doi.org/10.1093/icb/icab064
deVries, M. S., Webb, S. J., & Taylor, J. R. A. (2019). Re-examination of the effects of food abundance on jaw plasticity in purple sea urchins. Marine Biology, 166(11). https://doi.org/10.1007/s00227-019-3586-1
Taylor, J. R. A., deVries, M. S., & Elias, D. O. (2019). Growling from the gut: co-option of the gastric mill for acoustic communication in ghost crabs. Proceedings of the Royal Society B: Biological Sciences, 286(1910). https://doi.org/10.1098/rspb.2019.1161
Rankin, A., Seo, K., Graeve, O. A., & Taylor, J. R. A. (2019). No compromise between metabolism and behavior of decorator crabs in reduced pH conditions. Scientific Reports, 9. https://doi.org/10.1038/s41598-019-42696-8
Taylor, J. R. A. (2018). Aquatic versus terrestrial crab skeletal support: morphology, mechanics, molting and scaling. Journal of Experimental Biology, 221(21). https://doi.org/10.1242/jeb.185421
Sato, K. N., Andersson, A. J., Day, J. M. D., Taylor, J. R. A., Frank, M. B., Jung, J. Y., McKittrick, J., & Levin, L. A. (2018). Response of sea urchin fitness traits to environmental gradients across the Southern California oxygen minimum zone. Frontiers in Marine Science, 5. https://doi.org/10.3389/fmars.2018.00258
Lowder, K. B., Allen, M. C., Day, J. M. D., Deheyn, D. D., & Taylor, J. R. A. (2017). Assessment of ocean acidification and warming on the growth, calcification, and biophotonics of a California grass shrimp. Ices Journal of Marine Science, 74(4), 1150–1158. https://doi.org/10.1093/icesjms/fsw246
deVries, M. S., Webb, S. J., Tu, J., Cory, E., Morgan, V., Sah, R. L., Deheyn, D. D., & Taylor, J. R. A. (2016). Stress physiology and weapon integrity of intertidal mantis shrimp under future ocean conditions. Scientific Reports, 6. https://doi.org/10.1038/srep38637
Frank, M. B., Naleway, S. E., Wirth, T. S., Jung, J. Y., Cheung, C. L., Loera, F. B., Medina, S., Sato, K. N., Taylor, J. R. A., & McKittrick, J. (2016). A protocol for bioinspired design: A ground sampler based on sea urchin jaws. Jove-Journal of Visualized Experiments, 110. https://doi.org/10.3791/53554
Naleway, S. E., Taylor, J. R. A., Porter, M. M., Meyers, M. A., & McKittrick, J. (2016). Structure and mechanical properties of selected protective systems in marine organisms. Materials Science & Engineering C-Materials for Biological Applications, 59, 1143–1167. https://doi.org/10.1016/j.msec.2015.10.033
Taylor, J. R. A., Gilleard, J. M., Allen, M. C., & Deheyn, D. D. (2015). Effects of CO2-induced pH reduction on the exoskeleton structure and biophotonic properties of the shrimp Lysmata californica. Scientific Reports, 5. https://doi.org/10.1038/srep10608
Patek, S. N., Rosario, M. V., & Taylor, J. R. A. (2013). Comparative spring mechanics in mantis shrimp. The Journal of Experimental Biology, 216(7), 1317–1329. https://doi.org/10.1242/jeb.078998
Taylor, J. R. A., & Patek, S. N. (2010). Ritualized fighting and biological armor: the impact mechanics of the mantis shrimp’s telson. Journal of Experimental Biology, 213(20), 3496–3504. https://doi.org/10.1242/jeb.047233
Taylor, J. R. A., Hebrank, J., & Kier, W. M. (2007). Mechanical properties of the rigid and hydrostatic skeletons of molting blue crabs, Callinectes sapidus Rathbun. Journal of Experimental Biology, 210(24), 4272–4278. https://doi.org/10.1242/jeb.007054
Taylor, J. R. A., & Kier, W. M. (2006). A pneumo-hydrostatic skeleton in land crabs - A sophisticated dual support system enables a crab to stay mobile immediately after moulting. Nature, 440(7087), 1005–1005. https://doi.org/10.1038/4401005a
Taylor, J. R. A., & Kier, W. M. (2003). Switching skeletons: Hydrostatic support in molting crabs. Science, 301(5630), 209–210. https://doi.org/10.1126/science.1085987